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Abstract

This paper deals with free vibration of a nonlinear system having combined linear and nonlinear springs in series. The

conservative oscillation system is formulated as a nonlinear ordinary differential equation having linear and nonlinear

stiffness components. The governing equation is linearized and associated with the harmonic balance method to establish

new and accurate higher-order analytical approximate solutions. Unlike the perturbation method which is restricted to

nonlinear conservative systems with a small perturbed parameter and also unlike the classical harmonic balance method

which results in a complicated set of algebraic equations, the new approach yields simple approximate analytical

expressions valid for small as well as large amplitudes of oscillation. Some examples are solved and compared with

numerical integration solutions and published results. New solutions to the nonlinear systems are also presented and

discussed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The Lindstedt–Poincaré perturbation (LP) [1–6] and the classical harmonic balance (HB) methods
[1,3,5–11] are some of the most commonly used asymptotic techniques for solving nonlinear oscillation
systems. The perturbation method is, in principle, useful if there exist small parameters in the nonlinear
systems for which the solution can be analytically expanded into power series of the parameters. The
coefficients of the series are found as solutions of a set of linear problems. However, very frequently small
parameters in many nonlinear problems in science and engineering are not available, for instance, the
Klein–Gordon equation [12] and the Duffing-harmonic oscillator [13,14]. Even if such small parameters exist,
the analytical solutions given by the perturbation methods have, in most cases, a small range of validity.
Although a large nonlinear parameter can be treated by the classical HB method, it yields a set of complicated
nonlinear algebraic equations upon harmonic balancing thus barring availability of simple analytical
solutions. The new approach here extends both the perturbation and HB methods. Instead of nonlinear
algebraic equations, a set of simple linear algebraic equations with accurate higher-order approximate
analytical solutions valid beyond the scope of perturbation method can be obtained.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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In addition to the LP and classical HB methods, there have been many other methods developed for solving
nonlinear oscillation systems, including the KBM method [1–4,6], the multiple scales method [1,3,4,6], which
are applicable to nonlinear oscillation systems even for rather large amplitudes of oscillation. However,
higher-order analytic approximations are usually difficult because they often result in a set of complicated
coupled equations requiring further recursive numerical analysis. Recently, the weighted linearization method
[15], the modified Lindstedt–Poincaré method [16], the power-series approach [17] and the homotopy analysis
method [18] were proposed to solve approximate periods with large amplitude of oscillations. These methods
involve tedious derivations and extensive computations.

Recently, Telli and Kopmaz [19] attempted to solve the motion of a mechanical system associated with
linear and nonlinear properties using analytical and numerical techniques. It dealt with vibration of a
conservative oscillation system with attached mass grounded by linear and nonlinear springs. The linkage of
the linear and nonlinear springs in series has been derived with cubic nonlinear characteristics in the equations
of motion [19]. As mentioned in Ref. [19], although there exists a vast literature on discrete systems including
either linear or nonlinear springs/restoring forces [3,5], one does not encounter publications on mechanical
systems with single-degree-of-freedom containing flexible component consisting of linear–nonlinear spring in
series, which occurs in technical applications. One similar mechanical model is the conservative Duffing
equation with linear and cubic characteristics governed by a second-order differential equation. The equation
of motion can be formed by transforming intermediate variables into a set of differential algebraic equations
and it may be further transformed into a nonlinear ordinary differential equation. The resulted nonlinear
differential equation was separately solved by using the LP and HB methods and compared with numerical
integration solutions using a built-in ODE-solver in MATLAB.

In an attempt to obtain accurate approximate analytical solutions for the system with combined linear and
nonlinear stiffness, this paper presents an alternative extension of the harmonic balancing method by
linearizing the governing equation prior to harmonic balancing, termed the LHB method [20]. There are
numerous linearization techniques for linearizing nonlinear problems such as equivalent linearization [5,6,21]
and phase space linearization [22,23]. Taylor-series [24–27] and Fourier-series expansions [28,29] have also
been widely used for solving the nonlinear problems. In this context, the governing equation of motion in the
paper is expanded in Fourier series because the elegant convergence of Fourier-series expansions significantly
increases the accuracy of the higher-order analytical approximations. This approach has been proved effective
for various conservative nonlinear oscillations with odd and even nonlinearities [30,31], inertia and static
nonlinearities [32] and nonnatural systems [33]. A system is usually called a nonnatural system if the kinetic
energy is not a quadratic function of the velocity [3,33,34], otherwise it is a natural system. Using this
approach, accurate higher-order analytical approximate periodic solutions in simple linear algebraic
expressions not restricted to a small perturbed parameter are presented. For comparison, numerical
integration solutions are obtained by integrating directly the nonlinear ordinary differential equation
numerically using the Runge–Kutta method, a built-in function in MATHEMATICA. It is concluded from
this analysis that the LP method yields inaccurate results. Although sufficient number of terms for the
perturbed parameter can be included, tedious derivations, computations and complicated implementation
have to be involved and yet they are applicable only to nonlinear equations with the presence of small
parameters. Similarly, the classical HB method with four-term and six-term approximations [19] yields
inaccurate results. More harmonic terms can be included but a set of nonlinear algebraic equations has to be
solved. Hence, numerical analysis is required because there no simple approximate analytical solution is
available.

2. Governing equation of motion and formulation

Consider free vibration of a conservative, single-degree-of-freedom system with a mass attached to linear
and nonlinear springs in series as shown in Fig. 1. After transformation, the motion is governed by a nonlinear
differential equation of motion [19] as

ð1þ 3�zv2Þ
d2v

dt2
þ 6�zv

dv

dt

� �2

þ o2
evþ �o2

ev3 ¼ 0, (1)
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Fig. 1. Nonlinear free vibration of a system of mass with serial linear and nonlinear stiffness on a frictionless contact surface [19].
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where

� ¼
b
k2

, (2)

x ¼
k2

k1
, (3)

z ¼
x

1þ x
, (4)

oe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

m 1þ xð Þ

s
(5)

with the initial conditions

vð0Þ ¼ A;
dv

dt
ð0Þ ¼ 0 (6)

in which e, b, n, oe, m and x are perturbation parameter (not restricted to a small parameter), coefficient of
nonlinear spring force, deflection of nonlinear spring, natural frequency, mass and the ratio of linear portion
k2 of the nonlinear spring constant to that of linear spring constant k1, respectively. Note that the notations in
Eqs. (1)–(5) follow those in Telli and Kopmaz [19].

The deflection of linear spring y1(t) and the displacement of attached mass y2(t) can be represented by the
deflection of nonlinear spring v in simple relationships [19] as

y1ðtÞ ¼ xvðtÞ þ �x½vðtÞ�3 (7)

and

y2ðtÞ ¼ vðtÞ þ y1ðtÞ. (8)

Introducing a new independent temporal variable, t ¼ ot, Eqs. (1) and (6) become

o2½ð1þ 3�zv2Þ€vþ 6�zv_v2� þ o2
evþ �o2

ev3 ¼ 0 (9)

and

vð0Þ ¼ A; _vð0Þ ¼ 0, (10)

where a dot denotes differentiation with respect to t. The deflection of nonlinear spring v is a periodic function
of t of period 2p. Based on Eq. (9), the periodic solution v(t) can be expanded in a Fourier series with only odd
multiples of t, as

vðtÞ ¼
X1
n¼0

h2nþ1 cosð2nþ 1Þt. (11)
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To linearize the governing differential equation, we assume v(t) as the sum of a principal term and a
correction term as [32,33]

vðtÞ ¼ v1ðtÞ þ Dv1ðtÞ. (12)

Substituting Eq. (12) into Eq. (9) and neglecting nonlinear terms of Dv1(t) yields

o2½ð1þ 3�zv21Þ€v1 þ 6�zv1 _v
2
1� þ o2

ev1 þ �o2
ev31 þ o2½ð1þ 3�zv21ÞD€v1 þ 2ð6�zv1 _v1ÞD_v1

þ ð6�zv1 €v1 þ 6�z_v21ÞDv1� þ ðo2
e þ 3�o2

ev21ÞDv1 ¼ 0 ð13Þ

and

Dv1ð0Þ ¼ 0; D_v1ð0Þ ¼ 0, (14)

where v1(t) ¼ A cos t is a periodic function of t of period 2p.
Making use of v1(t) ¼ A cos t, we have the following Fourier-series expansions:

ð1þ 3�zv21Þ€v1 þ 6�zv1 _v
2
1 ¼

X1
i¼0

a2iþ1 cosð2i þ 1Þt ¼ �
Að4þ 3A2z�Þ

4
cos t�

9A3z�

4
cos 3t, (15)

o2
ev1 þ �o2

ev31 ¼
X1
i¼0

b2iþ1 cos ð2i þ 1Þt ¼
Ao2

eð4þ 3A2�Þ

4
cos tþ

A3�o2
e

4
cos 3t, (16)

1þ 3�zv21 ¼
1

2
c0 þ

X1
i¼1

c2i cos 2it ¼
2þ 3zA2�

2
þ

3zA2�

2
cos 2t, (17)

2ð6�zv1 _v1Þ ¼
X1
i¼0

d2 iþ1ð Þ sin 2ði þ 1Þt ¼ �6zA2� sin 2t, (18)

6�zv1 €v1 þ 6�z_v21 ¼
1

2
e0 þ

X1
i¼1

e2i cos 2it ¼ �6zA2� cos 2t, (19)

o2
e þ 3�o2

ev21 ¼
1

2
f 0 þ

X1
i¼1

f 2i cos 2it ¼
ð2þ 3A2�Þo2

e

2
þ

3A2�o2
e

2
cos 2t, (20)

where a2i+1, b2i+1, c2i, d2(i+1), e2i and f2i for i ¼ 0,1,2,y are Fourier-series coefficients.

2.1. First-order analytical approximation

For the first-order analytical approximation, we set

Dv1ðtÞ ¼ 0 (21)

and therefore

vðtÞ ¼ v1ðtÞ ¼ A cos t. (22)

Substituting Eqs. (15)–(21) into Eq. (13), expanding the resulting expression in a trigonometric series and
setting the coefficient of cos t to zero yield the solution of the angular frequency o1 where subscript 1 indicates
the first-order analytical approximation. The analytical approximation of o1 can be expressed as

o1ðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4þ 3A2�Þo2

e

4þ 3A2z�

s
(23)

and the periodic solution is

v1ðtÞ ¼ A cos ½o1ðAÞt�. (24)
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2.2. Second-order analytical approximation

For the second analytical approximation, we set

Dv1ðtÞ ¼ x1ðcos t� cos 3tÞ. (25)

Substituting Eqs. (15)–(20) and (25) into Eq. (13), expanding the resulting expression in a trigonometric
series and setting the coefficients of cos t and cos 3t to zero result in a quadratic equation of o2

2 where
subscript 2 indicates the second-order analytical approximation. The angular frequency o2 can be expressed as

o2ðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
� 4ac

p
2a

s
, (26)

where

a ¼ �144A� 252zA3�� 135z2A5�2, (27)

b ¼ 160Ao2
e þ 124A3�o2

e þ 156A3z�o2
e þ 150zA5�2o2

e , (28)

c ¼ �16Ao4
e � 28A3�o4

e � 15A5�2o4
e (29)

and a, b and c are the coefficients of the quadratic equation of o2
2. The solution of o2 in Eq. (26) with respect

to þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
� 4ac

p
is omitted so that o2/o1E1. The periodic solution is

v2ðtÞ ¼ ½Aþ x1ðAÞ� cos½o2ðAÞt� � x1ðAÞ cos½3o2ðAÞt�, (30)

where

x1ðAÞ ¼ � ½32Ao2
e þ 25A3�o2

e þ 15A3z�o2
e þ 6A5z�2o2

e � ð1024A2o4
e

þ 1472A4�o4
e þ 2112A4z�o4

e þ 421A6�2o4
e þ 3654A6z�2o4

e

þ 981A6z2�2o4
e þ 1380A8z�3o4

e þ 1980A8z2�3o4
e

þ 900A10z2�4o4
eÞ

1=2
�=½2o2

eð32þ 51A2�þ 21A2z�þ 36A4z�2Þ�. ð31Þ
2.3. Third-order analytical approximation

Although the first- and the second-order analytical approximations are expected to agree with other
solutions, the agreement deteriorates as t progresses during the steady-state response. Therefore, the third-
order analytical approximation is derived for more accurate steady-state response. To construct the
hird-order analytical approximation, the previous related expressions must be adjusted due to interaction
between lower-order and higher-order harmonics. Here, Dv1(t) and v1(t) in Eqs. (12), (13) and (15)–(20) are
replaced by Dv2(t) and v2(t), respectively, and Eq. (13) is modified as

o2½ð1þ 3�zv22Þ€v2 þ 6�zv2 _v
2
2� þ o2

ev2 þ �o2
ev32 þ o2½ð1þ 3�zv22ÞD€v2 þ 2ð6�zv2 _v2ÞD_v2

þ ð6�zv2 €v2 þ 6�z_v22ÞDv2� þ ðo2
e þ 3�o2

ev22ÞDv2 ¼ 0. ð32Þ

The right-hand sides of Eqs. (15)–(20) in the third-order analytical approximation are completely different
from the first- and second-order analytical approximations because v1(t) is replaced by v2(t) of Eq. (30). The
coefficients of Fourier series in Eqs. (15)–(20) are presented in Appendix A.

For the third-order analytical approximation, we set

Dv2ðtÞ ¼ x2ðcos t� cos 3tÞ þ x3ðcos 3t� cos 5tÞ. (33)

Substituting the modified Eqs. (15)–(20) with v1(t) replaced by v2(t) and Eq. (33) into Eq. (32), expanding
the resulting expression in a trigonometric series and setting the coefficients of cos t, cos 3t and cos 5t to
zero yield o3 as a function of A. The corresponding approximate analytical periodic solution can then
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be solved, as

v3ðtÞ ¼ ½Aþ x1ðAÞ þ x2ðAÞ� cos½o3ðAÞt� þ ½x3ðAÞ � x2ðAÞ � x1ðAÞ� cos½3o3ðAÞt�

� x3ðAÞ cos 5o3ðAÞt½ �. ð34Þ

The angular frequency o3 is the squared-roots of roots of a quartic equation of o2
3 in the form of

a0ðo2
3Þ

4
þ b0ðo2

3Þ
3
þ c0ðo2

3Þ
2
þ d 0ðo2

3Þ þ e0 ¼ 0, (35)

where subscript 3 indicates the third-order analytical approximation and a0, b0, c0, d0 and e0 are coefficients of
the quartic equation of o2

3. There is a total of eight roots and the particular root which is closest to o2 is
identified as the most appropriate solution because o3 is a more accurate, higher-order approximation to o2.
Comparison of o3 in the following section shows that it is in excellent agreement with numerical integration
solution for small as well as large amplitudes of oscillation. The quartic equation is presented in a simplified
form in Appendix A where coefficients a0, b0, c0, d0 and e0 in Eq. (35) can be obtained by rearranging Eq. (A.1)
in the form of Eq. (35). It can be subsequently solved by any symbolic software such as MATHEMATICA for
o3. The constants x2 and x3 in Eq. (34) derived in terms of the coefficients of Fourier series are also presented
in Appendix A.
2.4. The limiting case for infinite amplitude A2-N

Since the proposed approach is suitable for oscillation amplitudes of any order approximations for the
limiting case of infinite amplitude as A2-N can be derived. For the first-order analytical approximation, we
have from Eq. (23),

lim
A2!1

o1ðAÞ ¼ lim
A2!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4þ 3A2�Þo2

e

4þ 3A2z�

s
¼

oeffiffiffi
z
p . (36)

For the second-order analytical approximation, we have from Eq. (26),

lim
A2!1

o2ðAÞ ¼ lim
A2!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
� 4ac

p
2a

s
¼

oeffiffiffi
z
p , (37)

where a, b and c are given in Eqs. (27)–(29).
For the third-order analytical approximation, we first solve

lim
A2!1

x1ðAÞ ¼
A

3
(38)

from Eq. (31). Using Eq. (38), the coefficients of Fourier series a2i+1, b2i+1, c2i, d2(i+1), e2i and f2i for
i ¼ 0,1,2,y can be found from Eqs. (A.4) to (A.28) which are then substituted into Eq. (A.1). The limiting
case as A2!1 for the resulting equation can be rearranged to form

lim
A2!1

A3½ ~aðo3Þ þ
~bðo3ÞA

2 þ ~cðo3ÞA
4 þ ~dðo3ÞA

6� ¼ 0, (39)

where

lim
A2!1

~aðo3Þ ¼
28

3
�ðzo2

3 � o2
eÞð225o

6
3 � 259o4

3o
2
e þ 35o2

3o
4
e � o6

eÞ, (40)

lim
A2!1

~bðo3Þ ¼
49

81
�2ðzo2

3 � o2
eÞð25; 875zo6

3 � 3211o4
3o

2
e � 26574zo4

3o
2
e

þ 2174o2
3o

4
e þ 1851zo2

3o
4
e � 115o6

eÞ, ð41Þ
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lim
A2!1

~cðo3Þ ¼
7

972
�3ðzo2

3 � o2
eÞð4; 605; 975z2o6

3 � 2; 081; 174zo4
3o

2
e

� 3; 220; 815z2o4
3o

2
e þ 143; 615o2

3o
4
e þ 572; 870zo2

3o
4
e � 20; 471o6

eÞ, ð42Þ

lim
A2!1

~dðo3Þ ¼
319; 039

3888
�4ðzo2

3 � o2
eÞ

2
ð9zo2

3 � o2
eÞð25zo2

3 � o2
eÞ. (43)

For the limit in Eq. (39) to vanish as A2-N, the respective coefficients must be zero or
limA2!1

~aðo3Þ ¼ limA2!1
~bðo3Þ ¼ limA2!1

~cðo3Þ ¼ limA2!1
~dðo3Þ ¼ 0. Setting Eqs. (40)–(43) to zero yield

multiple roots and the particular root closest to o2 in Eq. (37) is the limit for o3. Following the procedure, we
obtain the limiting third-order analytical approximation as

lim
A2!1

o3ðAÞ ¼
oeffiffiffi

z
p . (44)

Comparing Eqs. (36), (37) and (44), we observe that the various approximate analytical solutions yield
identical limiting frequency. Hence, we can also proof that the limiting period for the respective cases is
identical or

lim
A2!1

TðAÞ ¼
2p

ffiffiffi
z
p

oe

. (45)
3. Approximate results and discussion

To illustrate and verify accuracy of the new approximate analytical approach, a comparison of angular
frequencies via different approaches is presented in Table 1 for different m, A, e, k1 and k2. The parameter e is
linearly dependent on the coefficient of nonlinear spring force b as given in Eq. (2). The latter can be positive
or negative depending on whether the nonlinear spring has hard or soft-spring properties. As discussed in
Ref. [19], for a quasi-harmonic or periodic motion the terms ð1þ 3�zv2Þd2v=dt2 and o2

evþ �o2
ev3 in Eq. (1) are

guaranteed to be neither non-positive nor zero. The notations LP, HB, 1, 2, 3, n denoted as subscripts of v,o
and superscripts of y1,y2 refer to the LP method, the HB method using six-term approximation [19], the first-,
second- and third-order analytical approximations of the LHB method and the numerical integration solution,
respectively. The results for on is numerically obtained from Eq. (1) using the Runge–Kutta numerical
Table 1

Comparison of various approximate angular frequencies with respect to the numerical integration solution

m A e k1 k2 oLP Eq. (46) oHB Eq. (41d) [19] o1 Eq. (23) o2 Eq. (26) o3 Eq. (35) on

1 0.5 0.5 50 5 2.220197 2.220239 2.220265 2.220231 2.220231 2.220231

1 2 0.5 50 5 3.134986 3.257248 3.162278 3.177242 3.175209 3.175501

1 2 0.5 5 5 1.838180 1.726619 1.889822 1.908164 1.900724 1.903569

1 2 0.5 5 50 2.144360 2.145708 2.192645 2.196361 2.194560 2.195284

3 5 1 8 16 ** 1.176927 1.612707 1.616354 1.614287 1.615107

3 5 1 10 5 ** 1.052717 1.739776 1.753819 1.745984 1.749115

5 10 2 12 16 ** ** 1.545360 1.546115 1.545682 1.545853

5 30 5 15 5 ** ** 1.731282 1.731435 1.731347 1.731382

10 200 5 5 250 ** ** 0.707107 0.707107 0.707107 0.707107

10 100 10 5 25 ** ** 0.707106 0.707106 0.707106 0.707106

1 0.5 �0.5 50 5 2.038254 2.038207 2.038315 2.038210 2.038209 2.038209

2 2 �0.1 10 10 1.444007 1.458194 1.434860 1.443962 1.445356 1.446389

3 5 �0.02 30 10 1.320867 1.336111 1.313064 1.317663 1.318255 1.318370

4 10 �0.008 6 3 0.519615 0.555358 0.500000 0.510678 0.514250 0.517327

10 5 �0.01 8 16 0.705078 0.706817 0.703732 0.705144 0.705312 0.705412

**Invalid numerical solutions in complex values.
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integration method in combination with the bisection method. The solutions of Eq. (1) using the second-order
LP perturbation method [2] are briefly derived here. By expanding the frequency o2 ¼ o2

LP and the periodic
solution v(t) ¼ vLP(t) of Eq. (9) into a power series as a function of e,

o2
LP ¼ o2

e þ �o1 þ �
2o2 þ � � � (46)

vLPðtÞ ¼ v0ðtÞ þ �v1ðtÞ þ �2v2ðtÞ þ � � � ; t ¼ oLPt (47)

and setting the coefficients of e0, e1 and e2 as zero yields

€v0 þ v0 ¼ 0; v0ð0Þ ¼ A; _v0ð0Þ ¼ 0, (48)

€v1 þ v1 ¼ �v30 � 6zv0 _v
2
0 � 3zv20 €v0 �

o1 €v0
o2

e

; v1ð0Þ ¼ 0; _v1ð0Þ ¼ 0, (49)

€v2 þ v2 ¼ � 3v20v1 � 6zv1 _v
2
0 �

6zo1v0 _v
2
0

o2
e

� 12zv0 _v0 _v1 � 6zv0v1 €v0 �
3zo1v20 €v0

o2
e

�
o2 €v0
o2

e

� 3zv20 €v1 �
o1 €v1
o2

e

; v2ð0Þ ¼ 0; _v2ð0Þ ¼ 0. ð50Þ

Solving the linear second-order differential equations (48)–(50) with the corresponding initial conditions, we
obtain,

o1 ¼ �
3

4
A2o2

eðz� 1Þ; o2 ¼
3

128
A4o2

eð15z2 � 14z� 1Þ, (51)

v0 ¼ A cosoLPt; v1 ¼
A3

32
ð9z� 1Þ ðcos oLPt� cos 3oLPtÞ,

v2 ¼ �
A5ð441z2 � 34z� 23Þ

1024
cos oLPtþ

3A5ð9z2 � 1Þ

128
cos 3oLPt

þ
A5ð225z2 � 34zþ 1Þ

1024
cos 5oLPt. ð52Þ

In Table 1, the percentage errors for different analytical approximations with respect to on as a reference are
very small for small parameters m ¼ 1, A ¼ 0.5, e ¼ 0.5, k1 ¼ 50 and k2 ¼ 5. The relative errors of oLP, oHB,
o1, o2 and o3 are �0.0015%, 0.0004%, 0.0015%, 0% and 0%, respectively. For larger parameters m ¼ 1,
A ¼ 2, e ¼ 0.5, k1 ¼ 5 and k2 ¼ 50, the relative errors for the LP and HB methods increase significantly to
�2.3197% and �2.2583%, respectively, but the first-, second- and third-order analytical approximations still
maintain excellent agreement with respect to on. The relative errors for these three analytical approximations
are only �0.1202%, 0.0491% and �0.0330%, respectively. For extremely large parameters in Table 1, invalid
complex solutions are obtained using the LP and HB methods implying inapplicability of the methods in these
cases. Even for such extremely large parameters, the three different approximations o1, o2 and o3 are still in
excellent agreement with respect to the numerical integration solution on. Although numerical integration
methods for Eq. (1) are not restricted to small parameters, it is virtually impossible to predict the limiting
frequency limA2!1on because an explicit function is not available. For large parameters in the examples for
m ¼ 10, A ¼ 200, e ¼ 5, k1 ¼ 5, k2 ¼ 250 and m ¼ 10, A ¼ 100, e ¼ 10, k1 ¼ 5, k2 ¼ 25, the results o1, o2, o3

and on are identical. Theoretically speaking, the numerical integration solutions for A2-N should be equal
to oe=

ffiffiffi
z
p

derived in Eqs. (36), (37) and (44). It is also clearly observed that the relative errors for o1, o2, o3

and on in all cases are stable for different parameters m, A, e, k1 and k2 indicating that numerical values of the
parameters do not affect the accuracy of analysis, even for soft-spring systems (i.e. eo0). Hence, the LHB
approach as proposed here has clear-cut advantage over the LP and HB methods, which have various
restrictions as discussed in Section 1.

To obtain further approximation although it is frequently not necessary, the fourth-order analytical
approximation can be constructed based on the third-order analytical approximation. For illustrative
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Fig. 2. (a) Comparison of deflection of nonlinear spring v(t) for various analytical approximations and the numerical integration solution

for m ¼ 1, A ¼ 0.5, e ¼ 0.5 and x ¼ 0.1 (k1 ¼ 50, k2 ¼ 5). (b) Comparison of the deflection of linear spring y1(t) for various analytical

approximations and the numerical integration solutions for m ¼ 1, e ¼ 0.5 and x ¼ 0.1 (k1 ¼ 50, k2 ¼ 5). (c) Comparison of the

displacement of mass y2(t) for various analytical approximations and the numerical integration solutions for m ¼ 1, e ¼ 0.5 and x ¼ 0.1

(k1 ¼ 50, k2 ¼ 5).
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purposes, Dv2(t) and v2(t) in Eq. (32) can be replaced by Dv3(t) and v3(t) and the equation becomes

o2½ð1þ 3�zv23Þ€v3 þ 6�zv3 _v
2
3� þ o2

ev3 þ �o2
ev33 þ o2½ð1þ 3�zv23ÞD€v3 þ 2ð6�zv3 _v3ÞD_v3

þ ð6�zv3 €v3 þ 6�z_v23ÞDv3� þ ðo2
e þ 3�o2

ev23ÞDv3 ¼ 0. ð53Þ

Setting

Dv3ðtÞ ¼ x4ðcos t� cos 3tÞ þ x5ðcos 3t� cos 5tÞ þ x6ðcos 5t� cos 7tÞ (54)

and substituting the modified Eqs. (15)–(20), with v1(t) replaced by v3(t) given in Eq. (34), and Eq. (54) into
Eq. (53), then expanding the resulting expression in a trigonometric series and setting the coefficients of cos t,
cos 3t, cos 5t and cos 7t to zero yield the results for o ¼ o4, x4, x5 and x6 as a function of A. The
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Fig. 3. (a) Comparison of the deflection of nonlinear spring v(t) for various analytical approximations and the numerical integration

solutions for m ¼ 1, A ¼ 2, e ¼ 0.5 and x ¼ 10 (k1 ¼ 5, k2 ¼ 50). (b) Comparison of the deflection of linear spring y1(t) for various

analytical approximations and the numerical integration solutions for m ¼ 1, e ¼ 0.5 and x ¼ 10 (k1 ¼ 5, k2 ¼ 50). (c) Comparison of the

displacement of mass y2(t) for various analytical approximations and the numerical integration solutions for m ¼ 1, e ¼ 0.5 and x ¼ 10

(k1 ¼ 5, k2 ¼ 50).
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corresponding approximate analytical periodic solution can be expressed as

v4ðtÞ ¼ v3ðtÞ þ Dv3ðtÞ

¼ Aþ x1ðAÞ þ x2ðAÞ þ x4ðAÞ½ � cos o4ðAÞt½ �

þ x5ðAÞ � x4ðAÞ þ x3ðAÞ � x2ðAÞ � x1ðAÞ½ � cos 3o4ðAÞt½ �

þ x6ðAÞ � x5ðAÞ � x3ðAÞ½ � cos 5o4ðAÞt½ � � x6ðAÞ cos 7o4ðAÞt½ �. ð55Þ

The accuracy of the fourth-order analytical approximation is better than the previous three analytical
approximations, but a set of more complicated and lengthy linear algebraic equations are involved.

To further illustrate and verify accuracy of this new approximate analytical approach, a comparison of the
time history response of nonlinear spring deflection v(t), linear spring deflection y1(t) and mass displacement
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Fig. 4. (a) Comparison of the deflection of nonlinear spring v(t) for various analytical approximations and the numerical integration

solutions for m ¼ 10, A ¼ 200, e ¼ 5 and x ¼ 50 (k1 ¼ 5, k2 ¼ 250). (b) Comparison of the deflection of linear spring y1(t) for various

analytical approximations and the numerical integration solutions for m ¼ 10, e ¼ 5 and x ¼ 50 (k1 ¼ 5, k2 ¼ 250). (c) Comparison of the

displacement of mass y2(t) for various analytical approximations and the numerical integration solutions for m ¼ 10, e ¼ 5 and x ¼ 50

(k1 ¼ 5, k2 ¼ 250).
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y2(t) is presented in Figs. 2–6. Figs. 2–4 consider the nonlinear hard-spring cases while Figs. 5 and 6 are the
nonlinear soft-spring cases. The curves for vn(t), vLP(t), vHB(t), v1(t), v2(t) and v3(t) are generated via,
respectively, the numerical solution using MATHEMATICA, Eq. (47), Eq. (41e) from Telli and Kopmaz [19],
Eqs. (24), (30) and (34). The curves for y1(t) and y2(t) can be obtained through simple relationships in Eqs. (7)
and (8) accordingly. In Figs. 2a–c, the analytical approximations and numerical integration solutions are
highly consistent due to smallness of m, A, e, k1 and k2. In Fig. 3a, the solutions of the LP method is totally
invalid. The curves for the HB method, the first- and second-order LHB method apparently deviate from the
numerical integration solution. However, the third-order analytical approximation maintains excellent
agreement. As accuracy of the linear spring deflection and mass displacement relies heavily on the accuracy of
nonlinear spring deflection, the LP solutions in Figs. 3b and 3c also significantly deviate from the other
solutions.
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Fig. 5. (a) Comparison of the deflection of nonlinear spring v(t) for various analytical approximations and the numerical integration

solutions for m ¼ 4, A ¼ 10, e ¼ �0.008 and x ¼ 0.5 (k1 ¼ 6, k2 ¼ 3). (b) Comparison of the deflection of linear spring y1(t) for various

analytical approximations and the numerical integration solutions for m ¼ 4, e ¼ �0.008 and x ¼ 0.5 (k1 ¼ 6, k2 ¼ 3). (c) Comparison of

the displacement of mass y2(t) for various analytical approximations and the numerical integration solutions for m ¼ 4, e ¼ �0.008 and

x ¼ 0.5 (k1 ¼ 6, k2 ¼ 3).
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To extend applicability and to show flexibility and accuracy of this LHB method for extremely large
parameters, an example for m ¼ 10, A ¼ 200, e ¼ 5, k1 ¼ 5 and k2 ¼ 250 is presented in Figs. 4. In Figs. 4a–c,
no solution using the LP and HB methods is presented because the angular frequencies obtained are complex
and thus invalid. Hence, these methods are inapplicable for such large parameters. It is clearly observed that
the third-order analytical approximation is in excellent consistency with the numerical integration solution
even for such extremely large parameters. The lower-order approximations are inaccurate at t ¼ 0. The
second-order analytical approximation shows significant deviation in the crest and trough of the curve.

Figs. 5–6 show that the LP and HB methods are able to provide useful results for soft-spring cases; the HB
solutions are very inaccurate. Having said so, the higher-order analytical approximations of the LHB method
guarantee sufficient accuracy for both hard- or soft-spring represented by e and also large parameters of m, A,
k1 and k1 for which the classical LP and HB methods fail.
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Fig. 6. (a) Comparison of the deflection of nonlinear spring v(t) for various analytical approximations and the numerical integration

solutions for m ¼ 10, A ¼ 5, e ¼ �0.01 and x ¼ 2 (k1 ¼ 8, k2 ¼ 16). (b) Comparison of the deflection of linear spring y1(t) for various

analytical approximations and the numerical integration solutions for m ¼ 10, e ¼ �0.01 and x ¼ 2 (k1 ¼ 8, k2 ¼ 16). (c) Comparison of

the displacement of mass y2(t) for various analytical approximations and the numerical integration solutions for m ¼ 10, e ¼ �0.01 and

x ¼ 2 (k1 ¼ 8, k2 ¼ 16).
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For all cases illustrated in the figures, only one period of oscillation are presented. This is because only
conservative, nonlinear free oscillation of the mass–spring system is considered. The periodic solution is
repetitious and deviations of various analytical approximations with respect to the numerical integration
solution are expected to increase as time progresses.

4. Conclusions

In summary, a new method of linearized HB has been developed to construct an analytical approximation
for nonlinear free vibration of a system with linear and nonlinear stiffness. As exact solutions for many
nonlinear oscillation systems are frequently unavailable, the new approach is advantageous because
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approximate analytical solutions can be obtained. An avenue to analytically investigate the steady-state
response of the system is thus possible. This analytical approach does not require numerical integration as it
yields a set of simple, algebraic equations depending on initial conditions. Moreover, these approximate
analytical frequencies are valid for small as well as large amplitudes of oscillation. Unlike the perturbation and
classical HB methods, the proposed method is simple and it also avoids complicated numerical integration.
Furthermore, it does not require a known initial condition at the outset, which is a required condition for all
other numerical methods. Because the initial conditions in many practical cases may not be known a priori,
this method could be more preferable in analyzing certain nonlinear systems. The results concluded that the
third-order analytical approximation provides very accurate solutions with respect to the numerical
integration solutions.
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Appendix A

The third-order analytical approximation is obtained from the quartic equation of in Eq. (35) which is
simplified and presented as Eq. (A.1). Here, o ¼ o3 for simplicity. It can be solved directly by substituting the
corresponding coefficients of Fourier series in any symbolic softwares such as MATHEMATICA. The
Fourier-series coefficients a2i+1, b2i+1, c2i, d2(i+1), e2i and f2i for i ¼ 0,1,2,y in Eqs. (A.1)–(A.3) can be
determined from Eqs. (15) to (20) where v1(t) ¼ Acos t is replaced by v2(t) given in Eq. (30). The respective
relations are presented in Eqs. (A.4)–(A.28):

� 2 9o2c0 � o2c2 � o2c4 þ 9o2c6 þ o2d2 � o2d4 þ 3o2d6 � o2e0 þ o2e2
��

þ o2e4 � o2e6 � f 0 þ f 2 þ f 4 � f 6

�
9o2c2 � 16o2c4 � 25o2c6 þ 3o2d2 � 2o2d4

�
� 5o2d6 � o2e2 þ o2e6 � f 2 þ f 6

�
þ �o2c0 þ 8o2c2 þ 9o2c4 þ 2o2d2 þ 3o2d4

�
þ o2e0 � o2e4 þ f 0 � f 4

�
�9o2c0 þ 25o2c2 � 9o2c6 þ 25o2c8 þ 5o2d2 � 3o2d6

�
þ 5o2d8 þ o2e0 � o2e2 þ o2e6 � o2e8 þ f 0 � f 2 þ f 6 � f 8

��
o2a5 þ b5

� �
9o2c2
��

� 16o2c4 � 25o2c6 þ 3o2d2 � 2o2d4 � 5o2d6 � o2e2 þ o2e6 � f 2 þ f 6

�
þ o2a1 25o2c0 � 9o2c2 � 9o2c8 þ 25o2c10 þ 3o2d2 � 3o2d8 þ 5o2d10 � o2e0

�
þ o2e2 þ o2e8 � o2e10 � f 0 þ f 2 þ f 8 � f 10

�
þ b1 25o2c0 � 9o2c2 � 9o2c8 þ 25o2c10

�
þ 3o2d2 � 3o2d8 þ 5o2d10 � o2e0 þ o2e2 þ o2e8 � o2e10 � f 0 þ f 2 þ f 8 � f 10

��
þ 2 o2a3 þ b3Þ 9o2c2 � 16o2c4 � 25o2c6 þ 3o2d2 � 2o2d4 � 5o2d6 � o2e2 þ o2e6

���
�f 2 þ f 6

�
þ o2a1 �9o2c0 þ 25o2c2 � 9o2c6 þ 25o2c8 þ 5o2d2 � 3o2d6 þ 5o2d8

�
þ o2e0 � o2e2 þ o2e6 � o2e8 þ f 0 � f 2 þ f 6�f 8

�
þ b1 �9ð o2c0 þ 25o2c2 � 9o2c6

þ 25o2c8 þ 5o2d2 � 3o2d6 þ 5o2d8 þ o2e0 � o2e2 þ o2e6 � o2e8 þ f 0 � f 2 þ f 6

�f 8

��
9ð½ o2c2 � 16o2c4 � 25o2c6 þ 3o2d2 � 2o2d4 � 5o2d6 � o2e2 þ o2e6 � f 2þf 6

�
� 9ð o2c2 � o2c4 � o2c6 þ 9o2c8 � 3o2d2 þ o2d4 � o2d6 þ 3o2d8 � o2e2 þ o2e4

þ o2e6 � o2e8 � f 2 þ f 4 þ f 6 � f 8

�
þ �ð o2c0 þ 8o2c2 þ 9o2c4 þ 2o2d2 þ 3o2d4

þ o2e0 � o2e4 þ f 0 � f 4

�
25ð o2c0 � 9o2c2 � 9o2c8 þ 25o2c10 þ 3o2d2 � 3o2d8

þ 5o2d10 � o2e0 þ o2e2 þ o2e8 � o2e10 � f 0 þ f 2 þ f 8�f 10

��
¼ 0. ðA:1Þ
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The constants x2 and x3 in Eq. (34) are derived in terms of the coefficients of Fourier series as follows:

x2ðAÞ ¼ � ½2o2a3ð9o2c2 � 16o2c4 � 25o2c6 þ 3o2d2 � 2o2d4 � 5o2d6 � o2e2

þ o2e6 � f 2 þ f 6Þ þ 2b3ð9o2c2 � 16o2c4 � 25o2c6 þ 3o2d2 � 2o2d4 � 5o2d6

� o2e2 þ o2e6 � f 2 þ f 6Þ þ 2o2a1ð�9o2c0 þ 25o2c2 � 9o2c6 þ 25o2c8

þ 5o2d2 � 3o2d6 þ 5o2d8 þ o2e0 � o2e2 þ o2e6 � o2e8 þ f 0 � f 2 þ f 6 � f 8Þ

þ 2b1ð�9o2c0 þ 25o2c2 � 9o2c6 þ 25o2c8 þ 5o2d2 � 3o2d6 þ 5o2d8 þ o2e0

� o2e2 þ o2e6 � o2e8 þ f 0 � f 2 þ f 6 � f 8Þ�=½ð9o
2c0 � o2c2 � o2c4 þ 9o2c6

þ o2d2 � o2d4 þ 3o2d6 � o2e0 þ o2e2 þ o2e4 � o2e6 � f 0 þ f 2 þ f 4 � f 6Þð9o
2c2

� 16o2c4 � 25o2c6 þ 3o2d2 � 2o2d4 � 5o2d6 � o2e2 þ o2e6 � f 2 þ f 6Þ þ ð�o
2c0

þ 8o2c2 þ 9o2c4 þ 2o2d2 þ 3o2d4 þ o2e0 � o2e4 þ f 0 � f 4Þð�9o
2c0 þ 25o2c2

� 9o2c6 þ 25o2c8 þ 5o2d2 � 3o2d6 þ 5o2d8 þ o2e0 � o2e2 þ o2e6 � o2e8 þ f 0

� f 2 þ f 6 � f 8Þ�. ðA:2Þ

and

x3ðAÞ ¼ � ð2o2a1 þ 2b1 � o2c0x2 þ 8o2c2x2 þ 9o2c4x2 þ 2o2d2x2 þ 3o2d4x2

þ o2e0x2 � o2e4x2 þ f 0x2 � f 4x2Þ=ð�9o2c2 þ 16o2c4 þ 25o2c6 � 3o2d2 þ 2o2d4

þ 5o2d6 þ o2e2 � o2e6 þ f 2 � f 6Þ, ðA:3Þ

where

a1 ¼ �
~Að4þ 3 ~A

2
z�� 3 ~Ax1z�þ 6x2

1z�Þ

4
, (A.4)

a3 ¼
9½� ~A

3
z�þ 3x3

1z�þ x1ð4þ 6 ~A
2
z�Þ�

4
, (A.5)

a5 ¼
75 ~Ax1z�ð ~A� x1Þ

4
, (A.6)

b1 ¼
~Ao2

eð4þ 3 ~A
2
�� 3 ~Ax1�þ 6x2

1�Þ

4
, (A.7)

b3 ¼
o2

e ½
~A
3
�� 3x3

1�� 2x1ð2þ 3 ~A
2
�Þ�

4
, (A.8)

b5 ¼ �
3 ~Ax1�o2

eð
~A� x1Þ

4
, (A.9)

c0 ¼ 2þ 3 ~A
2
z�þ 3x2

1z�, (A.10)

c2 ¼
3 ~Az�ð ~A� 2x1Þ

2
, (A.11)
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c4 ¼ �3 ~Ax1z�, (A.12)

c6 ¼
3x2

1z�

2
, (A.13)

c8 ¼ c10 ¼ 0, (A.14)

d2 ¼ �6 ~Az�ð ~A� 2x1Þ, (A.15)

d4 ¼ 24 ~Ax1z�, (A.16)

d6 ¼ �18x2
1z�, (A.17)

d8 ¼ d10 ¼ 0, (A.18)

e2 ¼ �6 ~Az�ð ~A� 2x1Þ, (A.19)

e4 ¼ 48 ~Ax1z�, (A.20)

e6 ¼ �54x2
1z�, (A.21)

e0 ¼ e8 ¼ e10 ¼ 0, (A.22)

f 0 ¼ 2þ 3 ~A
2
�þ 3x2

1�
	 


o2
e , (A.23)

f 2 ¼
3 ~A�o2

eð
~A� 2x1Þ

2
, (A.24)

f 4 ¼ �3
~Ax1�o2

e , (A.25)

f 6 ¼
3x2

1�o
2
e

2
, (A.26)

f 8 ¼ f 10 ¼ 0, (A.27)

~A ¼ Aþ x1. (A.28)
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